Silver Nanoparticle-based Colorimetric Sensors for Metal Ions Detection: A Narrative Review

Main Article Content

Mohammad Alauhdin
Monica Avissa
Idhea Pryas Islami
Sinta Kurnia Rahmawati

##article.abstract##

Silver nanoparticle (AgNP) has a distinctive optical characteristic, that is strong surface plasmon resonance (SPR) absorption at visible wavelength. Aggregation or morphological changes of the nanoparticles will shift the SPR band to a longer wavelength. Then, this shifting can be applied as the basis of AgNPs-based colorimetric sensors. AgNPs can be applied as sensor probes in a colloidal form or immobilized on paper as a paper-based analytical device (PAD). PAD is a simplified analytical instrument for an easy, inexpensive, and portable sensing application. This article provides an up-to-date overview of the application of AgNPs as metal ion sensors. We review the properties and potential of AgNPs as a colorimetric sensor probe of metal ions. In addition, we present the sensor probe in the form of colloidal nanoparticles as well as a paper-based analytical device. We also discuss the analytical performance of AgNPs in detecting various metal ions.

Article Details

How to Cite
Alauhdin, M., Avissa, M., Islami, I. P., & Rahmawati, S. K. (2021). Silver Nanoparticle-based Colorimetric Sensors for Metal Ions Detection: A Narrative Review. Advanced Sustainable Engineering, 1(1), 17-23. Retrieved from https://ukischolarsnetwork.org/index.php/ase/article/view/48
##section.section##
Articles

References

C. Gao et al., ‘Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing’, Angewandte Chemie International Edition, vol. 51, no. 23, pp. 5629–5633, 2012, doi: https://doi.org/10.1002/anie.201108971.

T. S. Park, W. Li, K. E. McCracken, and J.-Y. Yoon, ‘Smartphone quantifies Salmonella from paper microfluidics’, Lab Chip, vol. 13, no. 24, pp. 4832–4840, 2013, doi: 10.1039/C3LC50976A.

X. Yang, Y. Yu, and Z. Gao, ‘A Highly Sensitive Plasmonic DNA Assay Based on Triangular Silver Nanoprism Etching’, ACS Nano, vol. 8, no. 5, pp. 4902–4907, May 2014, doi: 10.1021/nn5008786.

K. Chaloupka, Y. Malam, and A. M. Seifalian, ‘Nanosilver as a new generation of nanoproduct in biomedical applications’, Trends in Biotechnology, vol. 28, no. 11, pp. 580–588, Nov. 2010, doi: 10.1016/j.tibtech.2010.07.006.

N. A. Meredith, C. Quinn, D. M. Cate, T. H. Reilly, J. Volckens, and C. S. Henry, ‘Paper-based analytical devices for environmental analysis’, Analyst, vol. 141, no. 6, pp. 1874–1887, 2016, doi: 10.1039/C5AN02572A.

M. Balamurugan, S. Saravanan, and T. Soga, ‘Coating of green-synthesized silver nanoparticles on cotton fabric’, Journal of Coatings Technology and Research, vol. 14, no. 3, pp. 735–745.

E. Schoolaert, R. Hoogenboom, and K. De Clerck, ‘Colorimetric Nanofibers as Optical Sensors’, Advanced Functional Materials, vol. 27, no. 38, p. 1702646, Oct. 2017, doi: 10.1002/adfm.201702646.

A. Salvador, M. C. Pascual-Martí, J. R. Adell, A. Requeni, and J. G. March, ‘Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams’, Journal of Pharmaceutical and Biomedical Analysis, vol. 22, no. 2, pp. 301–306, 2000, doi: 10.1016/S0731-7085(99)00286-1.

Y. Safari, M. Karimaei, K. Sharafi, H. Arfaeinia, M. Moradi, and N. Fattahi, ‘Persistent sample circulation microextraction combined with graphite furnace atomic absorption spectroscopy for trace determination of heavy metals in fish species marketed in Kermanshah, Iran, and human health risk assessment: Determination of heavy metals in fish and human health risk assessment’, J. Sci. Food Agric, Dec. 2017, doi: 10.1002/jsfa.8786.

Ervina Nur Hidayati, M. Alauhdin, and A. T. Prasetya, ‘Perbandingan metode destruksi pada analisis pb dalam rambut dengan AAS’, IJCS, vol. 3, no. 1, pp. 36–41, 2014.

R. C. da S. Silva, B. C. Pires, and K. B. Borges, ‘Double-imprinted polymer based on cross-linked poly(vinylimidazole–trimethylolpropane trimethacrylate) in solid phase extraction for determination of lead from wastewater samples by UV–vis spectrophotometry’, International Journal of Environmental Analytical Chemistry, vol. 99, no. 10, pp. 949–967, Aug. 2019, doi: 10.1080/03067319.2019.1616717.

A. A. Alqadami et al., ‘Determination of heavy metals in skin-whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry’, IET Nanobiotechnology, vol. 11, no. 5, pp. 597–603, Aug. 2017, doi: 10.1049/iet-nbt.2016.0212.

K. R. Aadil, N. Pandey, S. I. Mussatto, and H. Jha, ‘Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity’, Journal of Environmental Chemical Engineering, vol. 7, no. 5, p. 103296, Oct. 2019, doi: 10.1016/j.jece.2019.103296.

H. Wei, C. Chen, B. Han, and E. Wang, ‘Enzyme colorimetric assay using unmodified silver nanoparticles.’, Anal Chem, vol. 80, no. 18, pp. 7051–7055, Sep. 2008, doi: 10.1021/ac801144t.

E. Zeni, M. Muldarisnur, and S. Syukri, ‘Sintesis dan Karakterisasi Sifat Optik Nanopartikel Silika yang Dilapisi Nanopartikel Emas’, Jurnal Fisika Unand, vol. 7, no. 1, pp. 21–26, 2018, doi: 10.25077/jfu.7.1.21-26.2018.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, ‘Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver’, Chemistry – A European Journal, vol. 11, no. 2, pp. 454–463, Jan. 2005, doi: 10.1002/chem.200400927.

A. Apilux, W. Siangproh, N. Praphairaksit, and O. Chailapakul, ‘Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates’, Talanta, vol. 97, pp. 388–394, Aug. 2012, doi: 10.1016/j.talanta.2012.04.050.

J. Z. Zhang and C. Noguez, ‘Plasmonic Optical Properties and Applications of Metal Nanostructures’, Plasmonics, vol. 3, no. 4, pp. 127–150, Dec. 2008, doi: 10.1007/s11468-008-9066-y.

N. E. Motl, A. F. Smith, C. J. DeSantis, and S. E. Skrabalak, ‘Engineering plasmonic metal colloids through composition and structural design’, Chem. Soc. Rev., vol. 43, no. 11, pp. 3823–3834, 2014, doi: 10.1039/C3CS60347D.

K. G. Stamplecoskie and J. C. Scaiano, ‘Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles’, J. Am. Chem. Soc., vol. 132, no. 6, pp. 1825–1827, Feb. 2010, doi: 10.1021/ja910010b.

N. Tarannum, Divya, and Y. K. Gautam, ‘Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review’, RSC Advances, vol. 9, no. 60, pp. 34926–34948, 2019, doi: 10.1039/c9ra04164h.

A. Zieli?ska, E. Skwarek, A. Zaleska, M. Gazda, and J. Hupka, ‘Preparation of silver nanoparticles with controlled particle size’, Procedia Chemistry, vol. 1, no. 2, pp. 1560–1566, Nov. 2009, doi: 10.1016/j.proche.2009.11.004.

Kandarp Mavani, Mihir Shah, ‘Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent’, IJERT, vol. 2, no. 3, 2013.

P. S. Sadalage, R. V. Patil, M. N. Padvi, and K. D. Pawar, ‘Almond skin extract mediated optimally biosynthesized antibacterial silver nanoparticles enable selective and sensitive colorimetric detection of Fe+2 ions’, Colloids and Surfaces B: Biointerfaces, vol. 193, p. 111084, Sep. 2020, doi: 10.1016/j.colsurfb.2020.111084.

MaríaJesús Lerma-García, Mónica Ávila, Ernesto Fco. Simó-Alfonso, and Ángel Ríos, Mohammed Zougagh, ‘Synthesis of gold nanoparticles using phenolic acids and its application in catalysis’, J. Mater. Environ. Sci., vol. 5, no. 6, pp. 1919–1926, 2014.

C. Caro, P. M. Castillo, R. Klippstein, D. Pozo, and A. P. Zaderenko, ‘Silver Nanoparticles: Sensing and Imaging Applications’, in Silver Nanoparticles, D. P. Perez, Ed. Rijeka: IntechOpen, 2010.

G. S. Ghodake et al., ‘Colorimetric detection of Cu2+ based on the formation of peptide-copper complexes on silver nanoparticle surfaces’, Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 1414–1422, 2018, doi: 10.3762/bjnano.9.134.

D. Uzuno?lu, M. Ergüt, C. G. Kodaman, and A. Özer, ‘Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe3+ Ions’, Arabian Journal for Science and Engineering, no. 0123456789, 2020, doi: 10.1007/s13369-020-04760-8.

V. Kumar, D. K. Singh, S. Mohan, D. Bano, R. K. Gundampati, and S. H. Hasan, ‘Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion’, Journal of Photochemistry and Photobiology B: Biology, vol. 168, pp. 67–77, Mar. 2017, doi: 10.1016/j.jphotobiol.2017.01.022.

R. Roto, B. Mellisani, A. Kuncaka, M. Mudasir, and A. Suratman, ‘Colorimetric Sensing of Pb2+ Ion by Using Ag Nanoparticles in the Presence of Dithizone’, Chemosensors, vol. 7, no. 3, p. 28, Jun. 2019, doi: 10.3390/chemosensors7030028.

K. Shrivas et al., ‘Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach’, Microchemical Journal, vol. 150, no. August, p. 104156, 2019, doi: 10.1016/j.microc.2019.104156.

K. Shrivas et al., ‘Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples’, Analytical and Bioanalytical Chemistry, vol. 412, no. 7, pp. 1573–1583, Mar. 2020, doi: 10.1007/s00216-019-02385-x.

J. Ling, Y. F. Li, and C. Z. Huang, ‘A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator’, Analytical Biochemistry, vol. 383, no. 2, pp. 168–173, Dec. 2008, doi: 10.1016/j.ab.2008.08.019.

H. Li and Y. Bian, ‘Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+’, Nanotechnology, vol. 20, no. 14, p. 145502, Mar. 2009, doi: 10.1088/0957-4484/20/14/145502.

P. N. Minh et al., ‘Reduced graphene oxide-wrapped silver nanoparticles for applications in ultrasensitive colorimetric detection of Cr(vi) ions and the carbaryl pesticide’, New Journal of Chemistry, vol. 44, no. 18, pp. 7611–7620, 2020, doi: 10.1039/d0nj00947d.

D. Xiong and H. Li, ‘Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water’, Nanotechnology, vol. 19, no. 46, 2008, doi: 10.1088/0957-4484/19/46/465502.

D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, ‘Recent Developments in Paper-Based Microfluidic Devices’, Anal. Chem., vol. 87, no. 1, pp. 19–41, Jan. 2015, doi: 10.1021/ac503968p.

D. D. Liana, B. Raguse, J. J. Gooding, and E. Chow, ‘Recent advances in paper-based sensors.’, Sensors (Basel), vol. 12, no. 9, pp. 11505–11526, 2012, doi: 10.3390/s120911505.

A. Yakoh, P. Rattanarat, W. Siangproh, and O. Chailapakul, ‘Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms’, Talanta, vol. 178, pp. 134–140, Feb. 2018, doi: 10.1016/j.talanta.2017.09.013.

R. Pelton, ‘Bioactive paper provides a low-cost platform for diagnostics’, TrAC Trends in Analytical Chemistry, vol. 28, no. 8, pp. 925–942, Sep. 2009, doi: 10.1016/j.trac.2009.05.005.

E. W. Nery and L. T. Kubota, ‘Sensing approaches on paper-based devices: a review’, Analytical and Bioanalytical Chemistry, vol. 405, no. 24, pp. 7573–7595, Sep. 2013, doi: 10.1007/s00216-013-6911-4.

L. Yu and Z. Z. Shi, ‘Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®’, Lab Chip, vol. 15, no. 7, pp. 1642–1645, 2015, doi: 10.1039/C5LC00044K.

A. T. Singh, D. Lantigua, A. Meka, S. Taing, M. Pandher, and G. Camci-Unal, ‘Paper-Based Sensors: Emerging Themes and Applications’, Sensors, vol. 18, no. 9, 2018, doi: 10.3390/s18092838.

Tim Mouw, ‘LAB Color Values’, X-Rite, 2018. https://www.xrite.com/blog/lab-color-space.

K. Shrivas et al., ‘Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach’, Microchemical Journal, vol. 150, pp. 104156–104156, Nov. 2019, doi: 10.1016/J.MICROC.2019.104156.

N. Ratnarathorn, O. Chailapakul, C. S. Henry, and W. Dungchai, ‘Simple silver nanoparticle colorimetric sensing for copper by paper-based devices’, Talanta, vol. 99, pp. 552–557, Sep. 2012, doi: 10.1016/j.talanta.2012.06.033.

P. Prosposito, L. Burratti, and I. Venditti, ‘Silver Nanoparticles as Colorimetric Sensors for Water Pollutants’, Chemosensors, vol. 8, no. 2, p. 26, 2020, doi: 10.3390/chemosensors8020026.

A. Piriya V.S, P. Joseph, K. Daniel S.C.G., S. Lakshmanan, T. Kinoshita, and S. Muthusamy, ‘Colorimetric sensors for rapid detection of various analytes’, Materials Science and Engineering: C, vol. 78, pp. 1231–1245, Sep. 2017, doi: 10.1016/j.msec.2017.05.018.